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Abstract :-  

Data Stream Management System usually have to process many long running queries that are active 

at the same time .Multi query can be evaluated more efficiency together than independently 

.Because it is often possible to share state and computation . By this observation , various multi 

query optimization (MQO) technique have been proposed, but having some limitations like they 

focus on very specialized workloads and integrating MQO technique for stream engine. 

The purpose of this paper is to demonstrate a rule based MQO framework that incorporate a set of 

new abstractions , physical operators, extending their counterparts , transformation rule and stream 

processing system. 
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INTRODUCTION 

 

Query optimizers have been instrumental for the success of relational database technology. The cost 

difference between a good and a bad query plan can be several orders of magnitude. For data stream 

systems the stakes are even higher. Instead of one- shot queries in a relational DBMS, a stream 

system is processing many continuous queries simultaneously. These queries are active for long 

periods of time and they process massive streams in real time. A poor query implementation choice 

can negatively affect system performance for the lifetime of the query. 
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The key to achieving good stream processing performance is to optimize multiple queries 

together, rather than individually. In a stream query workload, it is often the case that multiple 

concurrently active queries can share state and computation. Query evaluation techniques that 

exploit this property are referred to as Multi- Query Optimization (MQO) techniques. The 

importance of MQO for stream processing is widely accepted and various stream MQO techniques 

have been proposed [10, 16, 12, 22, 14, 15, 7]. 

Unfortunately, existing MQO techniques apply only to very specific queries or workload 

properties. For example, predicate indexing [10, 16] is tailored for a set of selection operators that 

all read the same input stream. In addition, work on MQO techniques so far has happened in 

parallel for CQL-style stream engines [2, 5], referred to as Relational Engines (RE), and event 

pattern detection engines [8, 21], referred to as Event Engines (EE). The former use an operator 

model similar to relational databases, while the latter implement queries with automata. This has led 

to an unsatisfactory state of MQO, characterized by a confusing variety of individual techniques 

that apply to specific workloads or implementation models only. This prevents effective MQO for 

complex queries and leads to a situation where similar approaches might be re-invented by the 

different communities for REs and EEs. 

To address these problems, we propose a Rule-based MQO framework, called RUMOR. It is 

inspired by the classical Query Graph Model (QGM) of RDBMSes [17], where query optimization 

techniques for single queries can be naturally modeled as transformation rules on query plans. 

RUMOR provides a modular and extensible framework, enabling new optimization techniques to 

be developed and incorporated incrementally into the system. 

To support rule-based MQO, we have to extend the key abstractions that are used in a 

traditional RDBMS or stream system: physical operators, transformation rules, and streams. We 

introduce a small number of carefully designed abstractions that together create a powerful MQO 

framework. In fact, RUMOR incorporates all previously proposed MQO techniques for stream 

processing. In particular, it successfully incorporates MQO techniques from both relational stream 

engines and automata-based event processing engines. Hence an additional benefit of RUMOR is 

that it enables the unification of these diverse camps of stream processing systems. Experimental 

results for our prototype implementation indicate that we can efficiently process a large number of 
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CQL-style relational stream queries, event processing queries, as well as hybrid queries involving 

query features from both types of query workloads. 

RUMOR lays the foundation for multi-query optimizers (MQ Optimizers) for data stream 

processing. It opens up opportunities for exciting future research on finding new rewrite rules and 

on extending the approach to cost-based MQ Optimizers, incorporating ideas from the classical 

dynamic programming approach to cost-based single query optimization in RDBM Sec [18]. 

 

Contributions and roadmap. Our contributions can be summarized as follows. 

• We propose RUMOR, a rule-based MQO framework, which naturally extends the rule-

based query optimization and query-plan-based processing model used by current RDBM- Ses and 

stream systems. 

• We show how new and existing MQO techniques for relational stream engines and for 

event engines can be integrated into RUMOR. This is done by defining a small number of carefully 

designed abstractions. 

• We demonstrate the efficacy of our approach by presenting experimental results using 

a prototype implementation of RUMOR. 

RUMOR integrates MQO techniques for REs and EEs. For ease of exposition,  we interleave 

the description of RUMOR and integration of MQO techniques for REs into RUMOR. We then 

describe the integration of MQO techniques for EEs  .  

Transformation Rules on m-ops 

We now extend the traditional transformation rules, which operate on query plans 

composed of physical operators, to multi- query transformation rules, or m-rules for short. M-rules 

operate on query plans composed of m-ops. Similar to a traditional transformation rule, an m-rule 

consists of a pair of condition and action functions [17]. The condition function is a Boolean side-

effect-free function on the query plan to identify opportunities for sharing. Once a sharing 

opportunity is identified among a set of operators in a query plan, the action function modifies the 

query plan by replacing that set of operators with a single m-op. We say the m-rule maps a set of m-

ops to a single m-op, or it merges these operators. 
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Figure 1: 

Query Plans in RUMOR (Red Rectangles Represent Stream Tuples; the Blue Rectangle is a 

Channel Tuple) 

 

More precisely, the condition of an m-rule is a function from the power set of the set of all 

possible m-ops to {true, false}. For a given set of m-ops, the rule can only be applied if the 

condition function evaluates to true. 

The action of an m-rule is another function. This function maps a set of m-ops (for which the 

condition function evaluated to true) to a single m-op, referred to as the target m-op, which 

implements the input m-ops more efficiently with an MQO technique. In the query plan, we simply 

replace all edges that previously connected other operators with the to-be merged operators by 

edges to the corresponding input and output streams of the target m-op. 

 

Expressing MQO Techniques with m-ops and m-rules 

Most of the existing specialized MQO techniques share work among operators reading 

the same stream(s). These can be implemented in RUMOR through m-ops and m-rules. For 

example, we can model predicate indexing for equality predicates on a single attribute as an m-rule 

as follows. The condition of the m-rule evaluates to true only for a set of selection operators that all 

read the same stream and whose selection predicate is an equality predicate on the same attribute A. 
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The action rule then replaces them with a target m-op that uses a hash index on attribute A for a 

more efficient evaluation of the selection predicates of these operators. 

It is not hard to see that all these previously proposed MQO approaches for multiple selection 

[10, 16], aggregation [22], and join [12] operators can be expressed similarly through corresponding 

m-ops and m-rules. The first three rows in Table 1 summarize these rules. Notice that in data stream 

processing systems, join and aggregation operators usually contain window specifications to 

prevent unbounded memory consumption. Also, aggregation operators may contain optional group-

by specifications. For each operator type , we name the corresponding m-rule s, indicating that it 

is an m-rule for instances of operator  that all process the same input stream(s). The remaining 

rows in Table 1 will be discussed later in this paper. The current set of m-rules is not intended to be 

complete—the extensible nature of rule-based query optimization allows for adding new rules. 

Extending Streams to Channels 

Logically, a channel is equivalent to the union of a set of streams; the streams that are 

combined to form a channel are required to have compatible schemas. This can always be achieved 

by "padding" the schemas of individual streams with the attributes from other streams after 

appropriate attribute renaming. 

Unlike a union of streams, a channel keeps track of which original stream a tuple belongs to. 

We say the channel encodes these streams. More formally, a channel encodes a set of data streams 

with union-compatible schemas as follows. The channel is defined as the union of its streams, but 

each stream tuple has an additional attribute called membership component. The membership 

component specifies the set of streams to which this tuple belongs. For efficiency, the membership 

component is implemented by a bit vector. 

Through the use of a channel we can share work in two ways. First, when identical tuples 

from different streams are encoded as a single channel tuple, their space is shared. Second, when 

multiple streams are encoded into the same channel, the computation of their consumer operators 

may be shared. 

Clearly, channels generalize streams. In RUMOR, they take the place of streams as the input 

and output of m-ops. For each m-op, the input (resp. output) channels together partition the set of 

input (resp. output) streams of this m-op. When an m-op o processes an input channel tuple t, a 

decoding and an encoding step are involved as follows. o first determines to which set of input 
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streams t belongs, so that it conceptually only evaluates those physical operators implemented by o 

that take this tuple as input. This is the decoding step. Similarly, when o is about to produce a set of 

output tuples, it needs to encode it into a set of channel tuples with the appropriate stream 

membership component, and then write them to the appropriate output channels. This is the 

encoding step. 

Note that the decoding and encoding steps can often be implemented very efficiently, or 

might actually not be necessary at all. For example, consider an m-op  {1, …, n} implementing n 

projections with the same projection specification, but with different input streams Si through Sn. 

Suppose these n input streams are encoded by channel C, and the n output streams are encoded by 

channel D. In this case, for each input channel tuple t from       C,{1, … ,n}  needs to perform 

projection only once and to produce only one output channel tuple in D, keeping the membership 

component of t intact in the output D tuple. 

m-rule 

name 

Set of input operators to which the m-

rule is applicable 

Target m-op 

C
S  A set of selection operators which read 

the same stream 

Predicate indexing 

[10, 16] 

S

 A set of aggregation operators which 

read the same stream with the same 

aggregate function but potentially 

different group by specifications 

Shared aggregate 

evaluation [22] 

S
•
 A set of join operators which read the 

same two streams, with the same join 

predicate but potentially different 

window lengths 

Shared join 

evaluation [12] 

c


 A set of aggregation operators reading 

sharable streams, with the same 

definition 

Shared fragment 

aggregation [15] 

c
•
 A set of join operators which read 

sharable streams, with the same 

definition 

Precision sharing 

join [14] 
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'
( )s or s


 A set of; (or  ) operators reading the 

same two streams, with the same 

definition  

Common 

Subexpression 

Elimination (Section 

4.3) 

'
( )c orc


 A set of; (or  ) operators which a) 

have the same definition b) read 

sharable input streams for the first 

input stream parameter, where these 

input stream are produced by the same 

m-op c) read the same input stream for 

the second input stream parameter 

Channel Based MQO 

(Section 4.4) 

 

we can use a channel to encode the two output streams of {1,2} in Figure 1(b), resulting in 

the query plan shown in Figure 1(c). Here the dashed arrow represents the channel, and {1,1} 

represents the aggregation m-op, implemented by the shared fragment aggregation technique 

described in [15]. Suppose an input tuple t from stream S satisfies both predicates in {1>2}. {1,2} 

then produces a single output channel tuple, represented by the blue rectangle in Figure 1(c). That 

channel tuple has the same content as the input tuple t, but is associated with a membership 

component denoted as [1,2], indicating that it belongs to both output streams of {1>2}. 

Note that ideas similar to channels were used for specific MQO algorithms for joins and 

aggregates in relational engines [14, 15]. Our contribution is to propose the addition of the channel 

concept to an MQO framework as a general abstraction for sharing work. As we will show  the 

combination of m-ops, m-rules, and channels also leads to powerful new MQO techniques for event 

processing queries. 

Conclusions:- 

In this paper, we propose RUMOR , a rule-based MQO framework to express and evaluate 

query plans that share work among multiple stream quries. RUMOR integrates existing and new 

MQO technique for both REs and EEs. As a result , we are able to unify REs and EEs ,and 

efficiently process a large number of RE queries , and hybrid queries in a single engine. 
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