
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2734

MULTI QUERY OPTIMIZATION AND ITS STRENGTH

 Bhanu Shanker Prasad

P G Deptt of Statistics and Computer Application,TMBU,Bhagalpur,Bihar,India

Designation:- M.D.N H/S SCHOOL,DUMRAMA ,AMARPUR,BANKA,BIHAR.INDIA

(Computer Science +2 Teacher)

Abstract :-

Data Stream Management System usually have to process many long running queries that are active

at the same time .Multi query can be evaluated more efficiency together than independently

.Because it is often possible to share state and computation . By this observation , various multi

query optimization (MQO) technique have been proposed, but having some limitations like they

focus on very specialized workloads and integrating MQO technique for stream engine.

The purpose of this paper is to demonstrate a rule based MQO framework that incorporate a set of

new abstractions , physical operators, extending their counterparts , transformation rule and stream

processing system.

Keywords:- stream , query , observation , optimization , abstractions , transformation

INTRODUCTION

Query optimizers have been instrumental for the success of relational database technology. The cost

difference between a good and a bad query plan can be several orders of magnitude. For data stream

systems the stakes are even higher. Instead of one- shot queries in a relational DBMS, a stream

system is processing many continuous queries simultaneously. These queries are active for long

periods of time and they process massive streams in real time. A poor query implementation choice

can negatively affect system performance for the lifetime of the query.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2735

The key to achieving good stream processing performance is to optimize multiple queries

together, rather than individually. In a stream query workload, it is often the case that multiple

concurrently active queries can share state and computation. Query evaluation techniques that

exploit this property are referred to as Multi- Query Optimization (MQO) techniques. The

importance of MQO for stream processing is widely accepted and various stream MQO techniques

have been proposed [10, 16, 12, 22, 14, 15, 7].

Unfortunately, existing MQO techniques apply only to very specific queries or workload

properties. For example, predicate indexing [10, 16] is tailored for a set of selection operators that

all read the same input stream. In addition, work on MQO techniques so far has happened in

parallel for CQL-style stream engines [2, 5], referred to as Relational Engines (RE), and event

pattern detection engines [8, 21], referred to as Event Engines (EE). The former use an operator

model similar to relational databases, while the latter implement queries with automata. This has led

to an unsatisfactory state of MQO, characterized by a confusing variety of individual techniques

that apply to specific workloads or implementation models only. This prevents effective MQO for

complex queries and leads to a situation where similar approaches might be re-invented by the

different communities for REs and EEs.

To address these problems, we propose a Rule-based MQO framework, called RUMOR. It is

inspired by the classical Query Graph Model (QGM) of RDBMSes [17], where query optimization

techniques for single queries can be naturally modeled as transformation rules on query plans.

RUMOR provides a modular and extensible framework, enabling new optimization techniques to

be developed and incorporated incrementally into the system.

To support rule-based MQO, we have to extend the key abstractions that are used in a

traditional RDBMS or stream system: physical operators, transformation rules, and streams. We

introduce a small number of carefully designed abstractions that together create a powerful MQO

framework. In fact, RUMOR incorporates all previously proposed MQO techniques for stream

processing. In particular, it successfully incorporates MQO techniques from both relational stream

engines and automata-based event processing engines. Hence an additional benefit of RUMOR is

that it enables the unification of these diverse camps of stream processing systems. Experimental

results for our prototype implementation indicate that we can efficiently process a large number of

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2736

CQL-style relational stream queries, event processing queries, as well as hybrid queries involving

query features from both types of query workloads.

RUMOR lays the foundation for multi-query optimizers (MQ Optimizers) for data stream

processing. It opens up opportunities for exciting future research on finding new rewrite rules and

on extending the approach to cost-based MQ Optimizers, incorporating ideas from the classical

dynamic programming approach to cost-based single query optimization in RDBM Sec [18].

Contributions and roadmap. Our contributions can be summarized as follows.

• We propose RUMOR, a rule-based MQO framework, which naturally extends the rule-

based query optimization and query-plan-based processing model used by current RDBM- Ses and

stream systems.

• We show how new and existing MQO techniques for relational stream engines and for

event engines can be integrated into RUMOR. This is done by defining a small number of carefully

designed abstractions.

• We demonstrate the efficacy of our approach by presenting experimental results using

a prototype implementation of RUMOR.

RUMOR integrates MQO techniques for REs and EEs. For ease of exposition, we interleave

the description of RUMOR and integration of MQO techniques for REs into RUMOR. We then

describe the integration of MQO techniques for EEs .

Transformation Rules on m-ops

We now extend the traditional transformation rules, which operate on query plans

composed of physical operators, to multi- query transformation rules, or m-rules for short. M-rules

operate on query plans composed of m-ops. Similar to a traditional transformation rule, an m-rule

consists of a pair of condition and action functions [17]. The condition function is a Boolean side-

effect-free function on the query plan to identify opportunities for sharing. Once a sharing

opportunity is identified among a set of operators in a query plan, the action function modifies the

query plan by replacing that set of operators with a single m-op. We say the m-rule maps a set of m-

ops to a single m-op, or it merges these operators.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2737

Figure 1:

Query Plans in RUMOR (Red Rectangles Represent Stream Tuples; the Blue Rectangle is a

Channel Tuple)

More precisely, the condition of an m-rule is a function from the power set of the set of all

possible m-ops to {true, false}. For a given set of m-ops, the rule can only be applied if the

condition function evaluates to true.

The action of an m-rule is another function. This function maps a set of m-ops (for which the

condition function evaluated to true) to a single m-op, referred to as the target m-op, which

implements the input m-ops more efficiently with an MQO technique. In the query plan, we simply

replace all edges that previously connected other operators with the to-be merged operators by

edges to the corresponding input and output streams of the target m-op.

Expressing MQO Techniques with m-ops and m-rules

Most of the existing specialized MQO techniques share work among operators reading

the same stream(s). These can be implemented in RUMOR through m-ops and m-rules. For

example, we can model predicate indexing for equality predicates on a single attribute as an m-rule

as follows. The condition of the m-rule evaluates to true only for a set of selection operators that all

read the same stream and whose selection predicate is an equality predicate on the same attribute A.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2738

The action rule then replaces them with a target m-op that uses a hash index on attribute A for a

more efficient evaluation of the selection predicates of these operators.

It is not hard to see that all these previously proposed MQO approaches for multiple selection

[10, 16], aggregation [22], and join [12] operators can be expressed similarly through corresponding

m-ops and m-rules. The first three rows in Table 1 summarize these rules. Notice that in data stream

processing systems, join and aggregation operators usually contain window specifications to

prevent unbounded memory consumption. Also, aggregation operators may contain optional group-

by specifications. For each operator type , we name the corresponding m-rule s, indicating that it

is an m-rule for instances of operator  that all process the same input stream(s). The remaining

rows in Table 1 will be discussed later in this paper. The current set of m-rules is not intended to be

complete—the extensible nature of rule-based query optimization allows for adding new rules.

Extending Streams to Channels

Logically, a channel is equivalent to the union of a set of streams; the streams that are

combined to form a channel are required to have compatible schemas. This can always be achieved

by "padding" the schemas of individual streams with the attributes from other streams after

appropriate attribute renaming.

Unlike a union of streams, a channel keeps track of which original stream a tuple belongs to.

We say the channel encodes these streams. More formally, a channel encodes a set of data streams

with union-compatible schemas as follows. The channel is defined as the union of its streams, but

each stream tuple has an additional attribute called membership component. The membership

component specifies the set of streams to which this tuple belongs. For efficiency, the membership

component is implemented by a bit vector.

Through the use of a channel we can share work in two ways. First, when identical tuples

from different streams are encoded as a single channel tuple, their space is shared. Second, when

multiple streams are encoded into the same channel, the computation of their consumer operators

may be shared.

Clearly, channels generalize streams. In RUMOR, they take the place of streams as the input

and output of m-ops. For each m-op, the input (resp. output) channels together partition the set of

input (resp. output) streams of this m-op. When an m-op o processes an input channel tuple t, a

decoding and an encoding step are involved as follows. o first determines to which set of input

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2739

streams t belongs, so that it conceptually only evaluates those physical operators implemented by o

that take this tuple as input. This is the decoding step. Similarly, when o is about to produce a set of

output tuples, it needs to encode it into a set of channel tuples with the appropriate stream

membership component, and then write them to the appropriate output channels. This is the

encoding step.

Note that the decoding and encoding steps can often be implemented very efficiently, or

might actually not be necessary at all. For example, consider an m-op  {1, …, n} implementing n

projections with the same projection specification, but with different input streams Si through Sn.

Suppose these n input streams are encoded by channel C, and the n output streams are encoded by

channel D. In this case, for each input channel tuple t from C,{1, … ,n} needs to perform

projection only once and to produce only one output channel tuple in D, keeping the membership

component of t intact in the output D tuple.

m-rule

name

Set of input operators to which the m-

rule is applicable

Target m-op

C
S A set of selection operators which read

the same stream

Predicate indexing

[10, 16]

S

 A set of aggregation operators which

read the same stream with the same

aggregate function but potentially

different group by specifications

Shared aggregate

evaluation [22]

S
•
 A set of join operators which read the

same two streams, with the same join

predicate but potentially different

window lengths

Shared join

evaluation [12]

c


 A set of aggregation operators reading

sharable streams, with the same

definition

Shared fragment

aggregation [15]

c
•
 A set of join operators which read

sharable streams, with the same

definition

Precision sharing

join [14]

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2740

'
()s or s


 A set of; (or ) operators reading the

same two streams, with the same

definition

Common

Subexpression

Elimination (Section

4.3)

'
()c orc


 A set of; (or ) operators which a)

have the same definition b) read

sharable input streams for the first

input stream parameter, where these

input stream are produced by the same

m-op c) read the same input stream for

the second input stream parameter

Channel Based MQO

(Section 4.4)

we can use a channel to encode the two output streams of {1,2} in Figure 1(b), resulting in

the query plan shown in Figure 1(c). Here the dashed arrow represents the channel, and {1,1}

represents the aggregation m-op, implemented by the shared fragment aggregation technique

described in [15]. Suppose an input tuple t from stream S satisfies both predicates in {1>2}. {1,2}

then produces a single output channel tuple, represented by the blue rectangle in Figure 1(c). That

channel tuple has the same content as the input tuple t, but is associated with a membership

component denoted as [1,2], indicating that it belongs to both output streams of {1>2}.

Note that ideas similar to channels were used for specific MQO algorithms for joins and

aggregates in relational engines [14, 15]. Our contribution is to propose the addition of the channel

concept to an MQO framework as a general abstraction for sharing work. As we will show the

combination of m-ops, m-rules, and channels also leads to powerful new MQO techniques for event

processing queries.

Conclusions:-

In this paper, we propose RUMOR , a rule-based MQO framework to express and evaluate

query plans that share work among multiple stream quries. RUMOR integrates existing and new

MQO technique for both REs and EEs. As a result , we are able to unify REs and EEs ,and

efficiently process a large number of RE queries , and hybrid queries in a single engine.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 9 September 2020 | ISSN: 2320-2882

IJCRT2009345 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2741

REFERENCES

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over

event streams. In Proc. SIGMOD, pages 147-160, 2008.

[2] Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic

foundations and query execution. Technical report, Stanford University, 2003.

[3] D. Carney, U. Qetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,

N. Tatbul, and S. Zdonik. Monitoring streams — a new class of data management

applications. In Proc. VLDB, 2002.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active

databases: Semantics, contexts and detection. In Proc. VLDB, pages 606-617, 1994.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ:

Continuous dataflow processing for an uncertain world. In Proc. CIDR, 2003.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query

system for internet databases. In Proc. SIGMOD, pages 379-390, 2000.

[7] Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive

publish/subscribe systems. In Proc. EDBT, 2006.

[8] Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga: A general

purpose event monitoring system. In Proc. CIDR, 2007.

[9] M. T. Edmead and P. Hinsberg. Windows NT Performance Monitoring, Benchmarking and

Tuning. Pearson Education, 1998.

[10] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering

algorithms and implementation for very fast publish/subscribe. In Proc. SIGMOD, pages

115-126, 2001.

[11] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active

databases: Model and implementation. In Proc. VLDB, pages 327-338, 1992.

[12] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elmagarmid. Scheduling for shared

window joins over data streams. In Proc. VLDB, pages 297-308, 2003.

[13] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy. Towards an integrated model for event

and stream processing. Technical Report CSE-2004-10, University of Texas at Arlington,

2004.

[14] S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein, and G. Jacobson. The case for

precision sharing. In Proc. VLDB, pages 972-986, 2004.

[15] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed aggregation. In

Proc. SIGMOD, 2006.

[16] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive

continuous queries over streams. In Proc. SIGMOD, 2002.

[17] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based query rewrite

optimization in starburst. In Proc. SIGMOD, pages 39-48, 1992.

http://www.ijcrt.org/

